先端X線分析により原発事故由来の不溶性セシウム粒子の生成・放出過程を解明

プレスリリース
三浦 輝さん(電力中央研究所研究員/研究当時:修士課程2年)、栗原 雄一さん(日本原子力研究開発機構人形峠環境技術センター研究員/研究当時:特任研究員)、板井 啓明准教授、高橋 嘉夫教授

発表のポイント

  • 放射光を用いた先端的なX線分析により、福島第一原発(FDNPP)事故由来の不溶性セシウム粒子(CsMP(注1))の内部構造・空隙率・元素比を解明した。
  • 過去の研究に比して5~30倍の数のCsMPを環境試料から粒子を水に懸濁させて単離する手法で効率的に回収し先端X線分析に供することで、発生源である原子炉内(1号機および2,3号機)での生成過程や、外部環境への放出過程を解明し、1号機からは球体粒子と不定形粒子、2号機からは微小粒子が環境中に放出されたと推定した。
  • 多数のCsMPを調べることで得られたCsMPの発生過程の系統的な理解や環境中での分布状態は、放射性セシウム(RCs)の環境中での移行挙動予測の基礎情報となる。またCsMPの詳細な組成や物性評価は、今後の我が国の原発の安全な廃炉作業の推進にも貢献する。

概要

不溶性セシウム粒子(CsMP)は、FDNPPから放出されたRCsを濃集する微粒子であるが、環境中で採取された数が少ないため、その形成・放出過程、周辺での分布状況、形状や元素組成の系統的理解は進んでいなかった。また、微粒子であるため分析可能な手法が少なく、その完全な性状解明は未だ途上にある。東京大学大学院理学系研究科の三浦輝大学院生(研究当時:修士課程2年)・栗原雄一特任研究員(研究開始時)・高橋嘉夫教授らの研究グループは、効率的な分離手法(粒子を水に懸濁させて二分割し放射能測定を繰り返す)を開発し、道路粉塵などの環境試料から67個に及ぶ多数のCsMPを分離することに成功した。さらに同研究グループは、放射光施設(SPring-8(注2)および高エネルギー加速器研究機構 フォトンファクトリー(注3))で進める最先端X線分析(マイクロX線CT分析、マイクロビーム蛍光X線分析)を適用することで、主に50~400µmのCsMP(Type-B、1号機由来)の内部構造・空隙率や微量元素比を明らかにし、その結果を数µmの球状粒子であるType-AのCsMP(2,3号機由来;主に2号機とみられる)の結果と比較した。その結果、CsMP(Type-B)には球状と不定形の2種の形状があり、これらは最大で50%に及ぶ空隙率を示した。また空隙率を補正した正味の体積当たりの137Cs放射能は、球状Type-A粒子>球状Type-B粒子>不定形Type-B粒子であり、マイクロビーム蛍光X線分析から得られた揮発性元素と非揮発性元素の比も考慮すると、(i)球状粒子は原子炉内気相中で生成した球形シリカ(SiO2)粒子が揮発性元素を取り込んだもの、(ii)不定形粒子は原子炉内の構造物上でメルトが冷えて生成したもの、であると推定された。これらは、CsMPの生成過程、各号機から外部への放出過程、環境中での分布状態の解明に資するとともに、今後の我が国の原発の安全な廃炉作業の推進にも貢献する。

先端X線分析により原発事故由来の不溶性セシウム粒子の生成・放出過程を解明
図1:134Cs/137Cs比の分析による各粒子を放出した号機の推定。

用語解説

注1 CsMP
不溶性セシウム粒子。Radiocesium-bearing microparticleの略。通常0.1~400µm程度の大きさで、マスコミ等ではしばしば「セシウムボール」と呼ばれる。

注2 SPring-8
兵庫県の播磨科学公園都市にある、世界最高性能の放射光を生み出す、理化学研究所が所有する大型放射光施設で、その利用者支援などは高輝度光科学研究センター(JASRI)が行っている。SPring-8の名前はSuper Photon ring-8 GeVに由来する。放射光とは、電子を光とほぼ等しい速度まで加速し、電磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のこと。SPring-8では、この放射光を用いて、ナノテクノロジー、バイオテクノロジーや産業利用まで幅広い研究を行っている。

注3 フォトンファクトリー
茨城県のつくば市にある高エネルギー加速器研究機構の放射光施設。X線領域の光まで発生する放射光施設としては日本で最初に放射光の発生に成功した(1982年)。フォトンファクトリーは「光の工場」という意味で、略してPFとも呼ばれる。PFでは数度の大きな改造を行い、放射光の高輝度化を図りつつ、最新の技術を取り入れた実験装置の開発や実験環境の整備によって、広い分野の物質・生命科学研究に貢献している。

詳細については、以下をご参照ください。